

Table of contents

1		roduction	1
	1.1	Summary links	1
	1.2	Status	1
	1.3	Proposal	1
	1.4	About	1
2	Pro	ject	2
	2.1	Description	2
		2.1.1 Technical Implementation	2
	2.2	LLM Fine-tuning Architecture	2
	2.3	RAG Integration Pipeline	2
	2.4	Hosting Infrastructure	3
	2.5	Deployment Targets	3
	2.6	Evaluation Framework	3
	2.7	Software	4
	2.8	Hardware	4
3	Arc	hitecture and Diagrams	5
4	Tim	peline	8
	4.1	Detailed Timeline	8
		4.1.1 Community Bonding (May 9 - May 26)	8
		4.1.2 Milestone 1: Foundation (June 3)	8
		4.1.3 Milestone 2: Data Preparation (June 17)	9
		4.1.4 Milestone 3: Model Training (July 1)	9
		4.1.5 Midterm Evaluation (July 8)	9
		4.1.6 Milestone 4: Agentic Evaluation (July 22)	9
		4.1.7 Milestone 5: Web Interface (Aug 5)	10
		4.1.8 Final Submission (Aug 19)	10
	4.2	Benefit	10
5	Exp	perience and Approach	11
	5.1	Personal Background	11
	5.2	Experience	11
	5.3	Contingency	11
	5.4	Misc	12
	5.5	References	12

Introduction

1.1 Summary links

• Contributor: Fayez Zouari

• Mentors: Jason Kridner, Aryan Nanda , Kumar Abhishek

• Code: BeagleMind

• Documentation: BeagleMind Forum Thread

• GSoC: Project Description on GSoC

1.2 Status

This project is currently just a proposal.

1.3 Proposal

- Created accounts across OpenBeagle and Beagle Forum
- The PR Request for Cross Compilation: #197
- Created a project proposal using the proposed template.

1.4 About

• Forum: FAYEZ_ZOUARI

• OpenBeagle: fayezzouari

• Discord ID: .kageyamo

• GitHub: fayezzouari

• School: INSAT (National Institute of Applied Science and Technology)

• Country: Tunisia

• Typical work hours: 9:00 AM - 6:00 PM (UTC+1)

• Previous GSoC participation: No

Project

Project name: BeagleMind - Documentation Assistant with Fine-tuned LLM and RAG

2.1 Description

BeagleMind combines fine-tuned LLMs with RAG to create an accurate documentation assistant that:

- 1. Uses PEFT/LoRA fine-tuning on BeagleBoard documentation
- 2. Implements RAG for fact-based responses and to reduce LLM hallucination
- 3. Accessed using a HF inference endpoint
- 4. Deploys via: CLI tool for local usage Web interface with websockets
- 5. Includes agentic evaluation framework

2.1.1 Technical Implementation

2.2 LLM Fine-tuning Architecture

The system will employ the selected LLM as its base model, utilizing Parameter-Efficient Fine-Tuning (PEFT) with LoRA adapters to specialize the model for BeagleBoard documentation. The training pipeline processes OpenBeagle resources through:

- Semantic segmentation of technical documentation
- · Generation of instruction-response pairs
- Dynamic masking of code samples for focused learning

Evaluation will combine:

- Perplexity measurements on held-out documentation
- Task-specific accuracy on BeagleBoard API questions
- · Human review of generated troubleshooting steps

2.3 RAG Integration Pipeline

The retrieval-augmented generation system implements a three-stage accuracy enforcement:

1. Document Processing:

- · Hierarchical chunking preserving code-sample context
- · Metadata enrichment with section headers
- · Cross-document relationship mapping
- 2. Vector Retrieval:
 - · Hybrid dense-sparse retrieval using BAAI embeddings
 - · Query-adaptive reranking
 - Confidence-based fallback mechanisms
- 3. Response Generation:
 - · Contextual grounding with retrieved passages
 - Automatic citation injection
 - · Confidence thresholding for uncertain responses

2.4 Hosting Infrastructure

The production deployment features:

Table 1: Hosting Specifications

Component	Implementation	
Inference Endpoint	Hugging Face TGI with 4-bit quantization	
Load Balancing	Round-robin with health checks	
Monitoring	Prometheus metrics for: - Token generation latency - Retrieval hit rate - Hallucination alerts	

2.5 Deployment Targets

Multi-platform accessibility through:

- 1. Web Interface:
 - React.js frontend with response streaming
 - Interactive citation visualization
 - Session-based query history
- 2. CLI Tool:
 - Access to the hosted LLM through an Api Key
 - · Configurable verbosity levels
 - Automated test script integration

2.6 Evaluation Framework

The agentic evaluation system employs three specialized test agents:

- 1. Fact-Verification Agent:
 - Cross-references answers with source docs
 - · Flags unsupported technical claims
 - Maintains accuracy heatmaps

- 2. Completeness Auditor:
 - Scores answer depth on:
 - API reference coverage
 - Troubleshooting steps
 - Example code relevance
- 3. Stress-Test Bot:
 - Generates adversarial queries
 - · Measures failure modes
 - Identifies documentation gaps

2.7 Software

- Programming Languages: Python
- ML Tools: PEFT, LoRA, Quantization
- Frameworks: FastAPI, Hugging Face Transformers
- Database: ChromaDB/Weaviate/Qdrant
- Frontend: React
- Deployment: Docker, Nginx, PYPI, Hugging Face Spaces
- Version Control: Git, GitHub/GitLab

2.8 Hardware

- Development Boards: BeagleBone Al-64 BeagleY-Al
- Cloud Services: Hugging Face Spaces / Inference Endpoints Vercel

Architecture and Diagrams

These diagrams represent the workflow of the methods mentionned earlier.

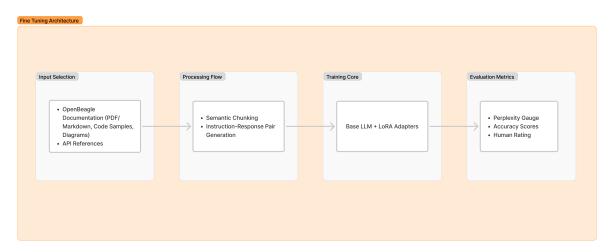


Fig. 1: Fine-Tuning Architecture

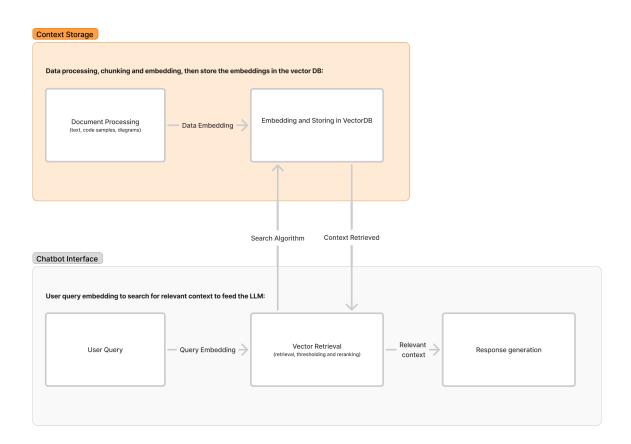


Fig. 2: RAG Integration Pipeline

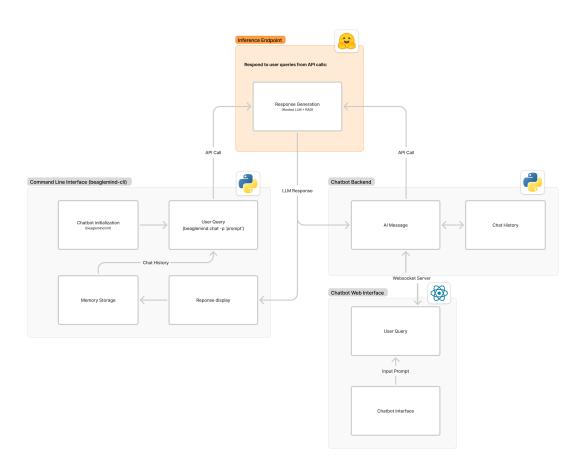


Fig. 3: Deployment Structure

Timeline

Deadline	Milestone	Deliverables
May 27	Coding Begins	Finalize architecture diagrams
June 3	M1: Foundation	CLI prototype, Fine-tuning strategy doc
June 17	M2: Data Preparation	Curated dataset, Vector DB ready
July 1	M3: Model Training	Fine-tuned model on HF, Initial benchmarks
July 8	Midterm Evaluation	Working CLI with local inference
July 22	M4: Agentic Evaluation	Test agents implemented, Accuracy reports
Aug 5	M5: Web Interface	Websocket server, React frontend
Aug 19	Final Submission	Full documentation, Demo video

4.1 Detailed Timeline

4.1.1 Community Bonding (May 9 - May 26)

- Develop workflow diagrams:
 - Data collection pipeline
 - Fine-tuning process
 - RAG integration flow
- Finalize model selection criteria
- Establish evaluation metrics with mentor

4.1.2 Milestone 1: Foundation (June 3)

1. CLI Prototype:

- Basic question-answering interface
- Chatbot using only RAG just to present the PoC
- Provide helpful parameters like -h for help, -p for prompt and -l to refer to a log file
- Simple evaluation script

2. Video demonstration:

- Provide video demonstration
- Present a proof of concept
- · Highlight that the actual solution will feature a hosted fine-tuned LLM and RAG to reduce hallucination

3. Fine-tuning Prep:

- Document preprocessing scripts
- Training environment setup

4.1.3 Milestone 2: Data Preparation (June 17)

1. Document Processing:

- · Data formatting
- Generate synthetic Q&A pairs
- Convert all docs to clean Markdown
- Extract code samples, diagrams, cicruit schemas and any resource that could help in the troubleshooting

2. Vector Database:

- Implement chunking strategy
- · Test retrieval accuracy
- · Optimize embedding selection

4.1.4 Milestone 3: Model Training (July 1)

1. Fine-tuning:

- Training runs with different parameters
- · Loss/accuracy tracking
- · Quantization tests

2. Deployment:

- HF Inference Endpoint setup
- Performance benchmarks
- · Hallucination tests

4.1.5 Midterm Evaluation (July 8)

- Functional CLI with:
 - Model inference
 - Basic RAG integration
 - Accuracy metrics
- Video demonstration
- · Mentor review session

4.1.6 Milestone 4: Agentic Evaluation (July 22)

1. Evaluation Agents:

- · Fact-checking agent
- Completeness evaluator
- · Hallucination detector

4.1. Detailed Timeline 9

2. Automated Testing:

- 100-question test suite
- · Continuous integration setup
- · Performance dashboard

4.1.7 Milestone 5: Web Interface (Aug 5)

1. Backend:

- FastAPI websocket server
- · Dockerize the server
- Async model loading
- · Rate limiting

2. Frontend:

- React-based chat UI
- · Response visualization
- Mobile responsiveness

4.1.8 Final Submission (Aug 19)

- Comprehensive documentation:
 - Installation guides
 - API references
 - Training methodology
- 5-minute demo video
- · Performance report

4.2 Benefit

BeagleMind will provide:

- 24/7 documentation assistance
- Reduced maintainer workload
- · Visualized technical answers
- Accelerated debugging
- Offline documentation access
- Improved onboarding experience

10 Chapter 4. Timeline

Experience and Approach

5.1 Personal Background

As an Embedded Systems Engineering student with a passion for AI and robotics, I find the BeagleMind project perfectly aligns with my academic specialization and technical interests. My coursework in embedded systems, combined with self-study in Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), has prepared me to bridge the gap between hardware documentation and AI-powered assistance.

5.2 Experience

As an Embedded Systems Engineering student with AI specialization, I bring:

1. LENS Platform:

• RAG Chatbot with Citations: Developed a retrieval-augmented chatbot that provides answers with detailed references, URL, page number, and File Name.

2. Chatautomation Platform:

- · Built multimodal data loaders (PDFs, images, audio)
- Implemented voice interaction system (STT + LLM + TTS)
- Developed WhatsApp/Instagram chatbot integrations

3. Orange Digital Center Internship:

- Created MEPS monitoring system
- Developed biogas forecast mode
- · Implemented agentic workflows for production reports

4. x2x Modality Project:

- Hexastack Hackathon 1st place (Open source contribution)
- Speech to Text for effortless communication
- Text to Speech for improved accessibility
- Image and Document Processing into text for smoother integration

5.3 Contingency

If blockers occur:

- 1. Research documentation and source code
- 2. Seek community support (Discord/Forum)
- 3. Implement alternative approaches
- 4. Escalate to the mentor if unresolved

5.4 Misc

- Will comply with all GSoC requirements
- Merge request will be submitted to BeagleBoard GitHub
- Current demo available at bb-gsoc.fayez-zouari.tn | CLI GitHub Repo

5.5 References

- 1. Hugging Face Transformers
- 2. ChromaDB Documentation
- 3. BeagleBoard Documentation
- 4. PEFT Fine-tuning